FLOW OF A VISCOUS FLUID AROUND A SPHERE OF FINITE RADIUS
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Abstract: We consider the steady flow ofa viscous fluid around a sphere of
finite radius in non-linear formulation. The equations of motion are written
in non-dimensional terms. We seek their solution as the expansion of
the unknown stream function in a series of powers of the Reynolds
number, the coefficients of which are polynomials in associated
Legendre functions of the first kind. Recurrence relations are given for
the sequential determination of all coefficients. The velocity and
pressure fields are determined. The drag is calculated. Numerical
calculations are carried out.

1. Formulation of the problem. Suppose that an incompressible
viscous fluid flows around a sphere of radius r; where the flow is
defined not at infinity as in the classical case but on a sphere of finite
radius ry . In a spherical system of coordinates (6 = 0 is the axis of
symmetry), the boundary conditions of the problem are

v, =

=1y =0 for r=ry,

v, =ucos®, py=—usind for r=r,. (1.1)

We can write the exact Navier-Stokes equations and limiting
conditions (1.1) in non-dimensional form:

2 _ 1 Louv 10 0
dx R 22 ot 22 (1l —1%) oz’
aQ 1 1 LD LD o
T Ri1—v oz + 22 (1—1%) ot 1.2)
or, elininating Q:
1 —12 00 9 LO D o LD,
LL®=R[ # 9w gti—w g1 05 & 1 (1-3)
oD 00 , .
T T e =0 =1, =
o0
T =U—"a (z=a)
32 1 — 12 92 r
L=gp + % g =7
=2 = . (1.4
=73 T=c0s0, R=—

Here R is the Reynolds number, pu2 p(x,7) is the hydrodynamic
pressure, ri2ud(x,7) is the stream function, in terms of which the
velocity compoltents v, = uv(x,7) and v, = uw(x,T) are expressed as
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2. Solution of the problem. We seek the solution of problem (1.3)
in the form of a series of positive powers of the Reynolds nuinber R
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Here the Pnl (t) are the associated Legendre functions of the first
kind, we know that (2.1), together with its derivatives up to an order
determined by (1.3), converges for small Reynolds numbers [1, 2].
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Having substituted the value of the stream function (2. 1) into (1.3)
and (1.4), and after identifying coefficients of like powers of the
Reynolds number on the left- and right-hand sides and then for like
Pp(™) . we obtain an infinite sequence of system of Euler differential
equations, with the corresponding boundary conditions
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The rewmaining ¢; (i =2,3,...,8) are defined by siinilar expressions.
The solution of Eg. (2.2), satisfying (2.3), is
a
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Equations (2.1) and (2. 4)=(2. 8) fully define the stream function
and therefore the velocity field of the flow under consideration.

In determining the drag of the sphere we will use the value of the
function ¥, (x) which is easily obtained by successive application of
(2. 4)~(2. 8).

3. Determination of the pressure. If we substitute into (1.2) the
expression for the stream function (2.1), integrate the second equation
of (1.2) with respect to 7, and then substitute the result into the first
equation of (1.2), for the deterinination of the arbitrary dependence
on x (here, it is necessary to take into account that the functions
¥, j(x) and @k, i(x) are the solutions of Eq. (2.2), we thus establish
that the hydrodynamic pressure has the following form:
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where P, (7)is 2 Legendre polynomial and the functions qy i(x} and
o i(x) are expressed in terms of the coefficients of series (2.1) by

complicated formulas which we shall not quote. We simply note that,
due to boundary conditions (2. 3),
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4. Frontal drag. In view of the symmetry of the pressure, the
resulting action of the fluid on the sphere is defined by a force
directed along the axis of symmetry

F=\\(p, cosb—p sin0)],_ ds, (4.1)
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Substituting (4.2) into (4.1), replacing p(x,7) and &(x.7) by their
values from (3.1) and (2.1), taking note of the values of the integrals
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and taking note also of the property of the functions qi y(x) in (3.2),
we obtain
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Retaining only the first two terms of (4.3) and using the values
of the functions ¥3;(x) and ¥, (x), we can find the magnitude of the
drag to an accuracy of R
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The expression for the drag coefficient
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for various valuesof ¢ in terms of the Reynolds number R are:

£(2) = 7.2941(1 + 0.00113R?);
F(3) = 2.9754 (1 + 0.00511R?);
F(4) = 2.1049 (1 + 0.01192RY);
7(5) = 1.7558 (1 + 0.02152R2);
£(6) = 1.5714 (1 + 0.03217R?):
F(7) = 1.4582 (1 -~ 0.04480R2);
£(8) = 1.3820 (1 - 0.05871R2);
F(10) = 1.2862 (4 + 0.08957R?);
£(20) = 1.4264 (1 + 0.22162R2);
£(30) = 1.0810 (1 + 0.4989012);
f(50) = 1.0471 (1 + 0.97594R?).

We see that, as a increases, the drag coefficient generally
decreases, while its second term, which arises from the calculations of
non-linear terms in the pressure equations, increases.

We note that the magnitude of the drag from Eq. (4.4), for small
Peynolds numbers and for a = 10, 20, 30, hardly differs from the values
obtained by Oseen [3] and Praudimau and Pearson {4] for the case of the
streamiining of a sphere by a flow which is uniform at infinity.
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